NASA GHRC Collaboration between NASA MSFC and The University of Alabama in Huntsville
  • Access Data
    • Dataset List (HyDRO)
      • View a list of all GHRC dataset holdings using our custom search tool, HyDRO.
    • Search (HyDRO)
      • HyDRO is GHRC's custom dataset search and order tool.

        With HyDRO, you can search, discover, and filter GHRC's dataset holdings.

        HyDRO will also help you find information about browse imagery, access restrictions, and dataset guide documents.
    • Coincidence Search
      • The GHRC Coincidence Search Engine (CSE) may be used to search for times when up to four satellites were over or within the same geographic area simultaneously.

        Searches may be constrained by time, geographic area, and/or distance between the satellites.
    • THREDDS
      • This is our current OPeNDAP server.

        You can access, download, and subset selected datasets with THREDDS. You can also obtain WMS links and applicable documentation and browse images for some datasets.
    • Storm Tracks DB
      • The Tropical Storm Tracks database is derived from the storm data published by the National Hurricane Center (NHC).

        This web page provides a convenient user interface for casually browsing storm information, including location, category, and wind speed.
    • AMSU Temp Trends
      • Daily averaged temperatures of the Earth are measured by the Advanced Microwave Sounding Unit (AMSU) on NASA's Aqua satellite.
    • NASA Earthdata Search
      • Earthdata is NASA's next generation metadata and service discovery tool, providing search and access capabilities for dataset holdings at all of the Distributed Active Archive Centers (DAACs) including the GHRC.
    • Latest Data (HyDRO)
      • View the latest additions to our data holdings using HyDRO.
  • Measurements
  • Field Campaigns
    • Hurricane Science
      • GHRC has worked with NASA's Hurricane Science Research Program (HSRP) since the 1990's. We are the archive and distribution center for data collected during HSRP field campaigns, as well as the recent Hurricane Science and Severe Storm Sentinel (HS3) Earth Venture mission. Field campaigns provide for intensive observation of specific phenomena using a variety of instruments on aircraft, satellites and surface networks.

        GHRC also hosts a database of Atlantic and Pacific tropical storm tracks derived from the storm data published by the National Hurricane Center (NHC).
    • HS3 (2012-14)
      • Hurricane and Severe Storm Sentinel (HS3) is an Earth Ventures – Suborbital 1 mission aimed at better understanding the physical processes that control hurricane intensity change, addressing questions related to the roles of environmental conditions and internal storm structures to storm intensification.

        A variety of in-situ, satellite observations, airborne data, meteorological analyses, and simulation data were collected with missions over the Atlantic in August and September of three observation years (2012, 2013, 2014). These data are available at GHRC beginning in 2015.
    • GRIP (2010)
      • The Genesis and Rapid Intensification Processes (GRIP) experiment was a NASA Earth science field experiment in 2010 that was conducted to better understand how tropical storms form and develop into major hurricanes.

        The GRIP deployment was 15 August – 30 September 2010 with bases in Ft. Lauderdale, FL for the DC-8, at Houston, TX for the WB-57, and at NASA Dryden Flight Research Facility, CA for the Global Hawk.
    • TC4 (2007)
      • The NASA TC4 (Tropical Composition, Cloud and Climate Coupling) mission investigated the structure and properties of the chemical, dynamic, and physical processes in atmosphere of the tropical Eastern Pacific.

        TC4 was based in San Jose, Costa Rica during July 2007.

        The Real Time Mission Monitor provided simultaneous aircraft status for three aircraft during the TC4 experiment. During TC4, the NASA ER-2, WB-57 and DC-8 aircraft flew missions at various times. The science flights were scheduled between 17 July and 8 August 2007.
    • NAMMA (2006)
      • The NASA African Monsoon Multidisciplinary Analyses (NAMMA) campaign was a field research investigation based in the Cape Verde Islands, 350 miles off the coast of Senegal in west Africa.

        Commenced in August 2006, NASA scientists employed surface observation networks and aircraft to characterize the evolution and structure of African Easterly Waves (AEWs) and Mesoscale Convective Systems over continental western Africa, and their associated impacts on regional water and energy budgets.
    • TCSP (2005)
      • The Tropical Cloud Systems and Processes (TCSP) mission was an Earth science field research investigation focused on the study of the dynamics and thermodynamics of precipitating cloud systems and tropical cyclones. TCSP was conducted during the period July 1-27, 2005 out of the Juan Santamaria Airfield in San Jose, Costa Rica.

        The TCSP field experiment flew 12 NASA ER-2 science flights, including missions to Hurricanes Dennis and Emily, Tropical Storm Gert and an eastern Pacific mesoscale complex that may possibly have further developed into Tropical Storm Eugene.
    • ACES (2002)
      • The Altus Cumulus Electrification Study (ACES) was aimed at better understanding the causes and effects of electrical storms.

        Based at the Naval Air Station Key West in Florida, researchers in August 2002 chased down thunderstorms using an uninhabited aerial vehicle, or "UAV", allowing them to achieve dual goals of gathering weather data safely and testing new aircraft technology. This marked the first time a UAV was used to conduct lightning research.
    • CAMEX-4 (2001)
      • The Convection And Moisture EXperiment (CAMEX) was a series of NASA-sponsored hurricane science field research investigations. The fourth field campaign in the CAMEX series (CAMEX-4) was held in 16 August - 24 September, 2001 and was based out of Jacksonville Naval Air Station, Florida.

        CAMEX-4 was focused on the study of tropical cyclone (hurricane) development, tracking, intensification, and landfalling impacts using NASA-funded aircraft and surface remote sensing instrumentation.
    • CAMEX-3 (1998)
      • The Convection And Moisture EXperiment (CAMEX) is a series of hurricane science field research investigations sponsored by NASA. The third field campaign in the CAMEX series (CAMEX-3) was based at Patrick Air Force Base, Florida from 6 August - 23 September, 1998.

        CAMEX-3 successfully studied Hurricanes Bonnie, Danielle, Earl and Georges, yielding data on hurricane structure, dynamics, and motion. CAMEX-3 collected data for research in tropical cyclone development, tracking, intensification, and landfalling impacts using NASA-funded aircraft and surface remote sensing instrumentation.
    • GPM Ground Validation
      • The NASA Global Precipitation Measurement Mission (GPM) Ground Validation (GV) program includes the following field campaigns:

        a) LPVEx, Gulf of Finland in autumn 2010, to study rainfall in high latitude environments

        b) MC3E, cental Oklahoma spring and early summer 2011, to develop a complete characterization of convective cloud systems, precipitation and the environment

        c) GCPEx, Ontario, Canada winter of 2011-2012, direct and remove sensing observations, and coordinated model simulations of precipitating snow.

        d) IFloodS, Iowa, spring and early summer 2013, to study the relative roles of rainfall quantities and other factors in flood genesis.

        e) IPHEx, N. Carolina Appalachians/Piedmont region May-June 2014, for hydrologic validation over varied topography.

        f) OLYMPEx, Washington's Olympic Peninsula scheduled November 2015-February 2016, for hydrologic validation in extreme coastal and topographic gradients
    • OLYMPEX (Upcoming)
      • The OLYMPEX field campaign is scheduled to take place between November, 2015, and February, 2016, on the Olympic Peninsula in the Pacific Northwest of the United States.

        This field campaign will provide ground-based validation support of the Global Precipitation Measurement (GPM) satellite program that is a joint effort between NASA and JAXA.

        As for all GPM-GV campaigns, the GHRC will provide a collaboration portal to help investigators exchange planning information and to support collection of real-time data as well as mission science, project and instrument status reports during the campaign.
    • IPHEx (2014)
      • The Integrated Precipitation and Hydrology Experiment (IPHEx) was conducted in North Carolina during the months of April-June, 2014.

        IPHEx sought to characterize warm season orographic precipitation regimes, and the relationship between precipitation regimes and hydrologic processes in regions of complex terrain.
    • IFLOODs (2013)
      • The Iowa Flood Studies (IFloodS) experiment was conducted in the central to northeastern part of Iowa in Midwestern United States during the months of April-June, 2013.

        IFloodS' primary goal was to discern the relative roles of rainfall quantities such as rate and accumulation as compared to other factors (e.g. transport of water in the drainage network) in flood genesis.
    • GCPEX (2011-2012)
      • The GPM Cold-season Precipitation Experiment (GCPEx) occurred in Ontario, Canada during the winter season (Jan 15- Feb 26) of 2011-2012.

        GCPEx addressed shortcomings in GPM snowfall retrieval algorithm by collecting microphysical properties, associated remote sensing observations, and coordinated model simulations of precipitating snow. Collectively the GCPEx data set provides a high quality, physically-consistent and coherent data set suited to the development and testing of GPM snowfall retrieval algorithm physics.
    • MC3E (2011)
      • The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place in central Oklahoma during the April–June 2011 period.

        The overarching goal was to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that had never before been available.
    • LPVEx (2010)
      • The Light Precipitation Evaluation Experiment (LPVEx) took place in the Gulf of Finland in September and October, 2010 and collected microphysical properties, associated remote sensing observations, and coordinated model simulations of high latitude precipitation systems to drive the evaluation and development of precipitation algorithms for current and future satellite platforms.

        In doing so, LPVEx sought to address the general lack of dedicated ground-validation datasets from the ongoing development of new or improved algorithms for detecting and quantifying high latitude rainfall
  • Projects
    • HS3 Suborbital Mission
      • Hurricane and Severe Storm Sentinel (HS3) is an Earth Ventures – Suborbital 1 mission aimed at better understanding the physical processes that control hurricane intensity change, addressing questions related to the roles of environmental conditions and internal storm structures to storm intensification.
    • DISCOVER - MEaSUREs
      • DISCOVER was funded by NASA’s MEaSUREs program to provide highly accurate, multi-decadal geophysical products derived from satellite microwave sensors.
    • LIS Mission
      • Lightning observations from the Lightning Imaging Sensors (LIS) aboard the NASA’s TRMM satellite and International Space Station, as well as airborne observations and ground validation data.
    • SANDS
      • The SANDS project addressed Gulf of Mexico Alliance priority issues by generating enhanced imagery from MODIS and Landsat data to identify suspended sediment resulting from tropical cyclones. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance.
    • LANCE AMSR2
      • The Land, Atmosphere Near real-time Capability for EOS (LANCE) system provides access to near real-time data (less than 3 hours from observation) from AIRS, AMSR2, MLS, MODIS, and OMI instruments. LANCE AMSR2 products are generated by the AMSR Science Investigator-led Processing System at the GHRC.
  • Resources
    • Tools & Technologies
      • A collection of tools & technologies developed and/or used by GHRC.
    • Publications
      • View GHRC & ITSC publications on the ITSC website
    • Innovations Lab
      • The GHRC Innovations Lab is a showcase for emerging geoinformatics technologies resulting from NASA-sponsored research at the University of Alabama in Huntsville.
    • Educational Resources
      • A list of resources from NASA, MSFC, and other sources for teachers and students focused on global change, hydrology, and science education.
    • Referencing our data
      • GHRC dataset citation help and examples.
    • Documents
      • Documentation related to GHRC datasets, software, and other offerings.
    • Featured items
      • The latest tools from GHRC.
  • Multimedia
  • About
    • Welcome
      • Local resources, lodging information, and weather to help you plan your visit to GHRC.
    • GHRC Personnel
      • A list to help you keep in touch with our personnel
    • FAQ
      • Frequently Asked Questions about GHRC data and services, and their answers.
    • Glossary
      • Terms and their definitions
    • Referencing our data
      • GHRC dataset citation help and examples
  • Cite Us
  • Contact Us
Lightning & Atmospheric Electricity Research

Lightning Home

The Lightning Team

A Lightning Primer

File Cabinet and Bookshelf

 

Global Lightning Image
Global Lightning Image
Global lightning strikes from January 1998 to present day from the NASA/MSFC Lightning Imaging Sensor

Space Research and Observations

Lightning Imaging Sensor (LIS) Overview

The Lightning Imaging Sensor (LIS), is a space-based instrument used to detect the distribution and variability of total lightning (cloud-to-cloud, intra-cloud, and cloud-to-ground lightning). It measures the amount, rate, and radiant energy of lightning during both day and night. Two LIS instruments were built in the 1990s, one for the Tropical Rainfall Measurement Mission (TRMM) and a spare which was stored on a shelf for over 20 years. A summary of the two platforms highlights the differences. The TRMM LIS operated successfully for over 17 years, from launch in 1997 until April 2015. The spare LIS was placed in Feb 2017 on the International Space Station (ISS) for a two - four year mission.

LIS Sensor

LIS SensorThe LIS instrument consists of a collection of instrumentation centered around a staring imager that is optimized to locate and detect lightning at millisecond timing with storm-scale resolution over a large region of the Earth's surface. Resolution of measurement and region of coverage varies depending on the orbit and altitude (whether on TRMM in a semi-equatorial orbit or on the ISS.)

LIS is a calibrated lightning sensor which uses a wide field-of-view expanded optics lens with a narrow-band filter (at 777nm) in conjunction with a high speed charge-coupled device (CCD) detection array. A Real Time Event Processor (RTEP) inside the electronics unit is used to determine when a lightning flash occurs, even in the presence of bright sunlit clouds. Weak lightning signals that occur during the day are hard to detect because of background illumination. The RTEP will remove the background signal, thus enabling the system to detect the weak lightning signal and achieve up to a 90% detection efficiency. The efficiency with which lightning detection occurs varies depending on time of day and the intensity of the lightning. The instrument records the time of occurrence of a lightning flash, measures the radiant energy, and determines the location of flashes within its field-of-view.

The LIS instrument was designed by scientists at the University of Alabama in Huntsville and was manufactured at the Marshall Space Flight Center. The lightning team can be contacted for more information.

Example Lightning Observations

The image below depicts some lightning activity that was observed by the TRMM Lightning Imaging Sensor (LIS) on its first day of operation (November 30,1997). The thunderstorms that produced this lightning activity were located near the eastern coast of Australia.

An examination of this example image demonstrates that not all clouds produce lightning. Due to the relationship between lightning and updraft velocity, lightning activity can be used to identify locations of strong upward convection.

Earth image showing orbit Closeup view of track

Use of LIS data

LIS data are used to study mesoscale phenomena such as storm convection, dynamics, and microphysics. These are related to global rates and amounts and distribution of convective precipitation, as well as to the release and transport of latent heat, which are all influenced by global scale processes. LIS data are vital to our understanding of global lightning and thunderstorm climatology.

Seasonal Lightning Map

 

ISS LISISS LIS

ISS LIS integrationThe spare LIS built for the TRMM program was carefully stored for future use and NASA found one. LIS was placed on the Internation Space Station in Feb 2017. LIS is mounted to the station as part of the U.S. Department of Defense (DoD) Space Test Program (STP)-H5 science and technology development payload. By placing LIS on the space station,which has a highly inclined orbit, a greater geographic range of measurements are obtained than previously measured by TRMM LIS. The ISS LIS provdes total lightning measurements between +/- 48 degrees latitude a geographic range nearly all global lightning.

ISS LIS monitors total global lightning in both day and night and will provide important cross-sensor calibration and validation with the Geostationary Lightning Mapper and with ground-based lightning networks. ISS LIS will also supply near real-time lightning data over data-sparse regions, such as oceans, to support operational weather forecasting and warning.

 

TRMM logoTRMM LIS

TRMM LISThe TRMM Satellite travels a distance of 7 kilometers every second (nearly 16,000 miles per hour) as it orbits the Earth, which allowed LIS to observe a point on the Earth or a cloud for almost 90 seconds as it passed overhead. Despite the brief duration of the observation, it is long enough to estimate the flashing rate of most storms. The instrument recorded the time of occurrence, measured the radiant energy, and determined the location of lightning events within its field-of-view. The TRMM LIS detection efficiency ranges from 69% near noon to 88% at night.

The TRMM satellite has a semi-equatorial orbit that is inclined 35 degrees with respect to the equator. The satellite altitude was 350 km from 1997 until 2001, at which time it was raised to 403 km. The orbit gradually declined in the last year of operation from 2014 - 2015. In 2015, TRMM was removed from orbit. The TRMM satellite orbit characteristics allowed for LIS observations in the tropical and subtropical regions of the globe between +/- 35 degrees latitude. Field-of-view and measurement spatial resolution varied slightly for each of the two orbital altitudes.

The LIS EOS Mission Objectives included Cloud Characterization, Hydrologic Cycle Studies, Storm Convection, Microphysics and Dynamics, and Seasonal and Interannual Variability of Thunderstorms. TRMM LIS contributed significantly to several of the TRMM mission objectives by providing a global lightning and thunderstorm climatology from which changes (even subtle temperature variations) were easily detected.

 

Related Links

Browse ISS LIS Data
Browse TRMM LIS Data
Order TRMM LIS Data using HyDRO
LIS Algorithm Theoretical Basis Document - (PDF Document)
The Optical Transient Detector (OTD) - the mission-qualified predecessor to LIS
International Space Station Web Page
Tropical Rainfall Measuring Mission Web Page

 

ITSC

UAH

RSS feed GHRC Facebook GHRC Twitter

NASA Official:
Rahul Ramachandran

Website maintained by the
UAH ITSC Web Team

If you have trouble viewing or
navigating this page, please contact
GHRC User Services

NASA Web Privacy Policy and Important Notices


    The GHRC is a member of the ICSU World Data System